rdesktop/secure.c
Peter Åstrand 1b4c36a45f Implemented support for "Client Auto-Reconnect". This means that the
client can re-connect using a cookie, instead of going through the
normal authentication. This patch saves those cookies, and uses them
during logon. 

Note that this feature is currently unused. It remains to add support
for, say, detecting when the TCP connection has gone done and restart
a new one. 



git-svn-id: svn://svn.code.sf.net/p/rdesktop/code/rdesktop/trunk@1539 423420c4-83ab-492f-b58f-81f9feb106b5
2010-01-12 10:34:38 +00:00

875 lines
22 KiB
C

/* -*- c-basic-offset: 8 -*-
rdesktop: A Remote Desktop Protocol client.
Protocol services - RDP encryption and licensing
Copyright (C) Matthew Chapman 1999-2008
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rdesktop.h"
#include "ssl.h"
extern char g_hostname[16];
extern int g_width;
extern int g_height;
extern unsigned int g_keylayout;
extern int g_keyboard_type;
extern int g_keyboard_subtype;
extern int g_keyboard_functionkeys;
extern RD_BOOL g_encryption;
extern RD_BOOL g_licence_issued;
extern RD_BOOL g_use_rdp5;
extern RD_BOOL g_console_session;
extern int g_server_depth;
extern VCHANNEL g_channels[];
extern unsigned int g_num_channels;
extern uint8 g_client_random[SEC_RANDOM_SIZE];
static int g_rc4_key_len;
static SSL_RC4 g_rc4_decrypt_key;
static SSL_RC4 g_rc4_encrypt_key;
static uint32 g_server_public_key_len;
static uint8 g_sec_sign_key[16];
static uint8 g_sec_decrypt_key[16];
static uint8 g_sec_encrypt_key[16];
static uint8 g_sec_decrypt_update_key[16];
static uint8 g_sec_encrypt_update_key[16];
static uint8 g_sec_crypted_random[SEC_MAX_MODULUS_SIZE];
uint16 g_server_rdp_version = 0;
/* These values must be available to reset state - Session Directory */
static int g_sec_encrypt_use_count = 0;
static int g_sec_decrypt_use_count = 0;
/*
* I believe this is based on SSLv3 with the following differences:
* MAC algorithm (5.2.3.1) uses only 32-bit length in place of seq_num/type/length fields
* MAC algorithm uses SHA1 and MD5 for the two hash functions instead of one or other
* key_block algorithm (6.2.2) uses 'X', 'YY', 'ZZZ' instead of 'A', 'BB', 'CCC'
* key_block partitioning is different (16 bytes each: MAC secret, decrypt key, encrypt key)
* encryption/decryption keys updated every 4096 packets
* See http://wp.netscape.com/eng/ssl3/draft302.txt
*/
/*
* 48-byte transformation used to generate master secret (6.1) and key material (6.2.2).
* Both SHA1 and MD5 algorithms are used.
*/
void
sec_hash_48(uint8 * out, uint8 * in, uint8 * salt1, uint8 * salt2, uint8 salt)
{
uint8 shasig[20];
uint8 pad[4];
SSL_SHA1 sha1;
SSL_MD5 md5;
int i;
for (i = 0; i < 3; i++)
{
memset(pad, salt + i, i + 1);
ssl_sha1_init(&sha1);
ssl_sha1_update(&sha1, pad, i + 1);
ssl_sha1_update(&sha1, in, 48);
ssl_sha1_update(&sha1, salt1, 32);
ssl_sha1_update(&sha1, salt2, 32);
ssl_sha1_final(&sha1, shasig);
ssl_md5_init(&md5);
ssl_md5_update(&md5, in, 48);
ssl_md5_update(&md5, shasig, 20);
ssl_md5_final(&md5, &out[i * 16]);
}
}
/*
* 16-byte transformation used to generate export keys (6.2.2).
*/
void
sec_hash_16(uint8 * out, uint8 * in, uint8 * salt1, uint8 * salt2)
{
SSL_MD5 md5;
ssl_md5_init(&md5);
ssl_md5_update(&md5, in, 16);
ssl_md5_update(&md5, salt1, 32);
ssl_md5_update(&md5, salt2, 32);
ssl_md5_final(&md5, out);
}
/* Reduce key entropy from 64 to 40 bits */
static void
sec_make_40bit(uint8 * key)
{
key[0] = 0xd1;
key[1] = 0x26;
key[2] = 0x9e;
}
/* Generate encryption keys given client and server randoms */
static void
sec_generate_keys(uint8 * client_random, uint8 * server_random, int rc4_key_size)
{
uint8 pre_master_secret[48];
uint8 master_secret[48];
uint8 key_block[48];
/* Construct pre-master secret */
memcpy(pre_master_secret, client_random, 24);
memcpy(pre_master_secret + 24, server_random, 24);
/* Generate master secret and then key material */
sec_hash_48(master_secret, pre_master_secret, client_random, server_random, 'A');
sec_hash_48(key_block, master_secret, client_random, server_random, 'X');
/* First 16 bytes of key material is MAC secret */
memcpy(g_sec_sign_key, key_block, 16);
/* Generate export keys from next two blocks of 16 bytes */
sec_hash_16(g_sec_decrypt_key, &key_block[16], client_random, server_random);
sec_hash_16(g_sec_encrypt_key, &key_block[32], client_random, server_random);
if (rc4_key_size == 1)
{
DEBUG(("40-bit encryption enabled\n"));
sec_make_40bit(g_sec_sign_key);
sec_make_40bit(g_sec_decrypt_key);
sec_make_40bit(g_sec_encrypt_key);
g_rc4_key_len = 8;
}
else
{
DEBUG(("rc_4_key_size == %d, 128-bit encryption enabled\n", rc4_key_size));
g_rc4_key_len = 16;
}
/* Save initial RC4 keys as update keys */
memcpy(g_sec_decrypt_update_key, g_sec_decrypt_key, 16);
memcpy(g_sec_encrypt_update_key, g_sec_encrypt_key, 16);
/* Initialise RC4 state arrays */
ssl_rc4_set_key(&g_rc4_decrypt_key, g_sec_decrypt_key, g_rc4_key_len);
ssl_rc4_set_key(&g_rc4_encrypt_key, g_sec_encrypt_key, g_rc4_key_len);
}
static uint8 pad_54[40] = {
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54,
54, 54, 54,
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54,
54, 54, 54
};
static uint8 pad_92[48] = {
92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92
};
/* Output a uint32 into a buffer (little-endian) */
void
buf_out_uint32(uint8 * buffer, uint32 value)
{
buffer[0] = (value) & 0xff;
buffer[1] = (value >> 8) & 0xff;
buffer[2] = (value >> 16) & 0xff;
buffer[3] = (value >> 24) & 0xff;
}
/* Generate a MAC hash (5.2.3.1), using a combination of SHA1 and MD5 */
void
sec_sign(uint8 * signature, int siglen, uint8 * session_key, int keylen, uint8 * data, int datalen)
{
uint8 shasig[20];
uint8 md5sig[16];
uint8 lenhdr[4];
SSL_SHA1 sha1;
SSL_MD5 md5;
buf_out_uint32(lenhdr, datalen);
ssl_sha1_init(&sha1);
ssl_sha1_update(&sha1, session_key, keylen);
ssl_sha1_update(&sha1, pad_54, 40);
ssl_sha1_update(&sha1, lenhdr, 4);
ssl_sha1_update(&sha1, data, datalen);
ssl_sha1_final(&sha1, shasig);
ssl_md5_init(&md5);
ssl_md5_update(&md5, session_key, keylen);
ssl_md5_update(&md5, pad_92, 48);
ssl_md5_update(&md5, shasig, 20);
ssl_md5_final(&md5, md5sig);
memcpy(signature, md5sig, siglen);
}
/* Update an encryption key */
static void
sec_update(uint8 * key, uint8 * update_key)
{
uint8 shasig[20];
SSL_SHA1 sha1;
SSL_MD5 md5;
SSL_RC4 update;
ssl_sha1_init(&sha1);
ssl_sha1_update(&sha1, update_key, g_rc4_key_len);
ssl_sha1_update(&sha1, pad_54, 40);
ssl_sha1_update(&sha1, key, g_rc4_key_len);
ssl_sha1_final(&sha1, shasig);
ssl_md5_init(&md5);
ssl_md5_update(&md5, update_key, g_rc4_key_len);
ssl_md5_update(&md5, pad_92, 48);
ssl_md5_update(&md5, shasig, 20);
ssl_md5_final(&md5, key);
ssl_rc4_set_key(&update, key, g_rc4_key_len);
ssl_rc4_crypt(&update, key, key, g_rc4_key_len);
if (g_rc4_key_len == 8)
sec_make_40bit(key);
}
/* Encrypt data using RC4 */
static void
sec_encrypt(uint8 * data, int length)
{
if (g_sec_encrypt_use_count == 4096)
{
sec_update(g_sec_encrypt_key, g_sec_encrypt_update_key);
ssl_rc4_set_key(&g_rc4_encrypt_key, g_sec_encrypt_key, g_rc4_key_len);
g_sec_encrypt_use_count = 0;
}
ssl_rc4_crypt(&g_rc4_encrypt_key, data, data, length);
g_sec_encrypt_use_count++;
}
/* Decrypt data using RC4 */
void
sec_decrypt(uint8 * data, int length)
{
if (g_sec_decrypt_use_count == 4096)
{
sec_update(g_sec_decrypt_key, g_sec_decrypt_update_key);
ssl_rc4_set_key(&g_rc4_decrypt_key, g_sec_decrypt_key, g_rc4_key_len);
g_sec_decrypt_use_count = 0;
}
ssl_rc4_crypt(&g_rc4_decrypt_key, data, data, length);
g_sec_decrypt_use_count++;
}
/* Perform an RSA public key encryption operation */
static void
sec_rsa_encrypt(uint8 * out, uint8 * in, int len, uint32 modulus_size, uint8 * modulus,
uint8 * exponent)
{
ssl_rsa_encrypt(out, in, len, modulus_size, modulus, exponent);
}
/* Initialise secure transport packet */
STREAM
sec_init(uint32 flags, int maxlen)
{
int hdrlen;
STREAM s;
if (!g_licence_issued)
hdrlen = (flags & SEC_ENCRYPT) ? 12 : 4;
else
hdrlen = (flags & SEC_ENCRYPT) ? 12 : 0;
s = mcs_init(maxlen + hdrlen);
s_push_layer(s, sec_hdr, hdrlen);
return s;
}
/* Transmit secure transport packet over specified channel */
void
sec_send_to_channel(STREAM s, uint32 flags, uint16 channel)
{
int datalen;
#ifdef WITH_SCARD
scard_lock(SCARD_LOCK_SEC);
#endif
s_pop_layer(s, sec_hdr);
if (!g_licence_issued || (flags & SEC_ENCRYPT))
out_uint32_le(s, flags);
if (flags & SEC_ENCRYPT)
{
flags &= ~SEC_ENCRYPT;
datalen = s->end - s->p - 8;
#if WITH_DEBUG
DEBUG(("Sending encrypted packet:\n"));
hexdump(s->p + 8, datalen);
#endif
sec_sign(s->p, 8, g_sec_sign_key, g_rc4_key_len, s->p + 8, datalen);
sec_encrypt(s->p + 8, datalen);
}
mcs_send_to_channel(s, channel);
#ifdef WITH_SCARD
scard_unlock(SCARD_LOCK_SEC);
#endif
}
/* Transmit secure transport packet */
void
sec_send(STREAM s, uint32 flags)
{
sec_send_to_channel(s, flags, MCS_GLOBAL_CHANNEL);
}
/* Transfer the client random to the server */
static void
sec_establish_key(void)
{
uint32 length = g_server_public_key_len + SEC_PADDING_SIZE;
uint32 flags = SEC_CLIENT_RANDOM;
STREAM s;
s = sec_init(flags, length + 4);
out_uint32_le(s, length);
out_uint8p(s, g_sec_crypted_random, g_server_public_key_len);
out_uint8s(s, SEC_PADDING_SIZE);
s_mark_end(s);
sec_send(s, flags);
}
/* Output connect initial data blob */
static void
sec_out_mcs_data(STREAM s)
{
int hostlen = 2 * strlen(g_hostname);
int length = 158 + 76 + 12 + 4;
unsigned int i;
if (g_num_channels > 0)
length += g_num_channels * 12 + 8;
if (hostlen > 30)
hostlen = 30;
/* Generic Conference Control (T.124) ConferenceCreateRequest */
out_uint16_be(s, 5);
out_uint16_be(s, 0x14);
out_uint8(s, 0x7c);
out_uint16_be(s, 1);
out_uint16_be(s, (length | 0x8000)); /* remaining length */
out_uint16_be(s, 8); /* length? */
out_uint16_be(s, 16);
out_uint8(s, 0);
out_uint16_le(s, 0xc001);
out_uint8(s, 0);
out_uint32_le(s, 0x61637544); /* OEM ID: "Duca", as in Ducati. */
out_uint16_be(s, ((length - 14) | 0x8000)); /* remaining length */
/* Client information */
out_uint16_le(s, SEC_TAG_CLI_INFO);
out_uint16_le(s, 212); /* length */
out_uint16_le(s, g_use_rdp5 ? 4 : 1); /* RDP version. 1 == RDP4, 4 == RDP5. */
out_uint16_le(s, 8);
out_uint16_le(s, g_width);
out_uint16_le(s, g_height);
out_uint16_le(s, 0xca01);
out_uint16_le(s, 0xaa03);
out_uint32_le(s, g_keylayout);
out_uint32_le(s, 2600); /* Client build. We are now 2600 compatible :-) */
/* Unicode name of client, padded to 32 bytes */
rdp_out_unistr(s, g_hostname, hostlen);
out_uint8s(s, 30 - hostlen);
/* See
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wceddk40/html/cxtsksupportingremotedesktopprotocol.asp */
out_uint32_le(s, g_keyboard_type);
out_uint32_le(s, g_keyboard_subtype);
out_uint32_le(s, g_keyboard_functionkeys);
out_uint8s(s, 64); /* reserved? 4 + 12 doublewords */
out_uint16_le(s, 0xca01); /* colour depth? */
out_uint16_le(s, 1);
out_uint32(s, 0);
out_uint8(s, g_server_depth);
out_uint16_le(s, 0x0700);
out_uint8(s, 0);
out_uint32_le(s, 1);
out_uint8s(s, 64); /* End of client info */
out_uint16_le(s, SEC_TAG_CLI_4);
out_uint16_le(s, 12);
out_uint32_le(s, g_console_session ? 0xb : 9);
out_uint32(s, 0);
/* Client encryption settings */
out_uint16_le(s, SEC_TAG_CLI_CRYPT);
out_uint16_le(s, 12); /* length */
out_uint32_le(s, g_encryption ? 0x3 : 0); /* encryption supported, 128-bit supported */
out_uint32(s, 0); /* Unknown */
DEBUG_RDP5(("g_num_channels is %d\n", g_num_channels));
if (g_num_channels > 0)
{
out_uint16_le(s, SEC_TAG_CLI_CHANNELS);
out_uint16_le(s, g_num_channels * 12 + 8); /* length */
out_uint32_le(s, g_num_channels); /* number of virtual channels */
for (i = 0; i < g_num_channels; i++)
{
DEBUG_RDP5(("Requesting channel %s\n", g_channels[i].name));
out_uint8a(s, g_channels[i].name, 8);
out_uint32_be(s, g_channels[i].flags);
}
}
s_mark_end(s);
}
/* Parse a public key structure */
static RD_BOOL
sec_parse_public_key(STREAM s, uint8 * modulus, uint8 * exponent)
{
uint32 magic, modulus_len;
in_uint32_le(s, magic);
if (magic != SEC_RSA_MAGIC)
{
error("RSA magic 0x%x\n", magic);
return False;
}
in_uint32_le(s, modulus_len);
modulus_len -= SEC_PADDING_SIZE;
if ((modulus_len < SEC_MODULUS_SIZE) || (modulus_len > SEC_MAX_MODULUS_SIZE))
{
error("Bad server public key size (%u bits)\n", modulus_len * 8);
return False;
}
in_uint8s(s, 8); /* modulus_bits, unknown */
in_uint8a(s, exponent, SEC_EXPONENT_SIZE);
in_uint8a(s, modulus, modulus_len);
in_uint8s(s, SEC_PADDING_SIZE);
g_server_public_key_len = modulus_len;
return s_check(s);
}
/* Parse a public signature structure */
static RD_BOOL
sec_parse_public_sig(STREAM s, uint32 len, uint8 * modulus, uint8 * exponent)
{
uint8 signature[SEC_MAX_MODULUS_SIZE];
uint32 sig_len;
if (len != 72)
{
return True;
}
memset(signature, 0, sizeof(signature));
sig_len = len - 8;
in_uint8a(s, signature, sig_len);
return ssl_sig_ok(exponent, SEC_EXPONENT_SIZE, modulus, g_server_public_key_len,
signature, sig_len);
}
/* Parse a crypto information structure */
static RD_BOOL
sec_parse_crypt_info(STREAM s, uint32 * rc4_key_size,
uint8 ** server_random, uint8 * modulus, uint8 * exponent)
{
uint32 crypt_level, random_len, rsa_info_len;
uint32 cacert_len, cert_len, flags;
SSL_CERT *cacert, *server_cert;
SSL_RKEY *server_public_key;
uint16 tag, length;
uint8 *next_tag, *end;
in_uint32_le(s, *rc4_key_size); /* 1 = 40-bit, 2 = 128-bit */
in_uint32_le(s, crypt_level); /* 1 = low, 2 = medium, 3 = high */
if (crypt_level == 0) /* no encryption */
return False;
in_uint32_le(s, random_len);
in_uint32_le(s, rsa_info_len);
if (random_len != SEC_RANDOM_SIZE)
{
error("random len %d, expected %d\n", random_len, SEC_RANDOM_SIZE);
return False;
}
in_uint8p(s, *server_random, random_len);
/* RSA info */
end = s->p + rsa_info_len;
if (end > s->end)
return False;
in_uint32_le(s, flags); /* 1 = RDP4-style, 0x80000002 = X.509 */
if (flags & 1)
{
DEBUG_RDP5(("We're going for the RDP4-style encryption\n"));
in_uint8s(s, 8); /* unknown */
while (s->p < end)
{
in_uint16_le(s, tag);
in_uint16_le(s, length);
next_tag = s->p + length;
switch (tag)
{
case SEC_TAG_PUBKEY:
if (!sec_parse_public_key(s, modulus, exponent))
return False;
DEBUG_RDP5(("Got Public key, RDP4-style\n"));
break;
case SEC_TAG_KEYSIG:
if (!sec_parse_public_sig(s, length, modulus, exponent))
return False;
break;
default:
unimpl("crypt tag 0x%x\n", tag);
}
s->p = next_tag;
}
}
else
{
uint32 certcount;
DEBUG_RDP5(("We're going for the RDP5-style encryption\n"));
in_uint32_le(s, certcount); /* Number of certificates */
if (certcount < 2)
{
error("Server didn't send enough X509 certificates\n");
return False;
}
for (; certcount > 2; certcount--)
{ /* ignore all the certificates between the root and the signing CA */
uint32 ignorelen;
SSL_CERT *ignorecert;
DEBUG_RDP5(("Ignored certs left: %d\n", certcount));
in_uint32_le(s, ignorelen);
DEBUG_RDP5(("Ignored Certificate length is %d\n", ignorelen));
ignorecert = ssl_cert_read(s->p, ignorelen);
in_uint8s(s, ignorelen);
if (ignorecert == NULL)
{ /* XXX: error out? */
DEBUG_RDP5(("got a bad cert: this will probably screw up the rest of the communication\n"));
}
#ifdef WITH_DEBUG_RDP5
DEBUG_RDP5(("cert #%d (ignored):\n", certcount));
ssl_cert_print_fp(stdout, ignorecert);
#endif
}
/* Do da funky X.509 stuffy
"How did I find out about this? I looked up and saw a
bright light and when I came to I had a scar on my forehead
and knew about X.500"
- Peter Gutman in a early version of
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
*/
in_uint32_le(s, cacert_len);
DEBUG_RDP5(("CA Certificate length is %d\n", cacert_len));
cacert = ssl_cert_read(s->p, cacert_len);
in_uint8s(s, cacert_len);
if (NULL == cacert)
{
error("Couldn't load CA Certificate from server\n");
return False;
}
in_uint32_le(s, cert_len);
DEBUG_RDP5(("Certificate length is %d\n", cert_len));
server_cert = ssl_cert_read(s->p, cert_len);
in_uint8s(s, cert_len);
if (NULL == server_cert)
{
ssl_cert_free(cacert);
error("Couldn't load Certificate from server\n");
return False;
}
if (!ssl_certs_ok(server_cert, cacert))
{
ssl_cert_free(server_cert);
ssl_cert_free(cacert);
error("Security error CA Certificate invalid\n");
return False;
}
ssl_cert_free(cacert);
in_uint8s(s, 16); /* Padding */
server_public_key = ssl_cert_to_rkey(server_cert, &g_server_public_key_len);
if (NULL == server_public_key)
{
DEBUG_RDP5(("Didn't parse X509 correctly\n"));
ssl_cert_free(server_cert);
return False;
}
ssl_cert_free(server_cert);
if ((g_server_public_key_len < SEC_MODULUS_SIZE) ||
(g_server_public_key_len > SEC_MAX_MODULUS_SIZE))
{
error("Bad server public key size (%u bits)\n",
g_server_public_key_len * 8);
ssl_rkey_free(server_public_key);
return False;
}
if (ssl_rkey_get_exp_mod(server_public_key, exponent, SEC_EXPONENT_SIZE,
modulus, SEC_MAX_MODULUS_SIZE) != 0)
{
error("Problem extracting RSA exponent, modulus");
ssl_rkey_free(server_public_key);
return False;
}
ssl_rkey_free(server_public_key);
return True; /* There's some garbage here we don't care about */
}
return s_check_end(s);
}
/* Process crypto information blob */
static void
sec_process_crypt_info(STREAM s)
{
uint8 *server_random = NULL;
uint8 modulus[SEC_MAX_MODULUS_SIZE];
uint8 exponent[SEC_EXPONENT_SIZE];
uint32 rc4_key_size;
memset(modulus, 0, sizeof(modulus));
memset(exponent, 0, sizeof(exponent));
if (!sec_parse_crypt_info(s, &rc4_key_size, &server_random, modulus, exponent))
{
DEBUG(("Failed to parse crypt info\n"));
return;
}
DEBUG(("Generating client random\n"));
generate_random(g_client_random);
sec_rsa_encrypt(g_sec_crypted_random, g_client_random, SEC_RANDOM_SIZE,
g_server_public_key_len, modulus, exponent);
sec_generate_keys(g_client_random, server_random, rc4_key_size);
}
/* Process SRV_INFO, find RDP version supported by server */
static void
sec_process_srv_info(STREAM s)
{
in_uint16_le(s, g_server_rdp_version);
DEBUG_RDP5(("Server RDP version is %d\n", g_server_rdp_version));
if (1 == g_server_rdp_version)
{
g_use_rdp5 = 0;
g_server_depth = 8;
}
}
/* Process connect response data blob */
void
sec_process_mcs_data(STREAM s)
{
uint16 tag, length;
uint8 *next_tag;
uint8 len;
in_uint8s(s, 21); /* header (T.124 ConferenceCreateResponse) */
in_uint8(s, len);
if (len & 0x80)
in_uint8(s, len);
while (s->p < s->end)
{
in_uint16_le(s, tag);
in_uint16_le(s, length);
if (length <= 4)
return;
next_tag = s->p + length - 4;
switch (tag)
{
case SEC_TAG_SRV_INFO:
sec_process_srv_info(s);
break;
case SEC_TAG_SRV_CRYPT:
sec_process_crypt_info(s);
break;
case SEC_TAG_SRV_CHANNELS:
/* FIXME: We should parse this information and
use it to map RDP5 channels to MCS
channels */
break;
default:
unimpl("response tag 0x%x\n", tag);
}
s->p = next_tag;
}
}
/* Receive secure transport packet */
STREAM
sec_recv(uint8 * rdpver)
{
uint32 sec_flags;
uint16 channel;
STREAM s;
while ((s = mcs_recv(&channel, rdpver)) != NULL)
{
if (rdpver != NULL)
{
if (*rdpver != 3)
{
if (*rdpver & 0x80)
{
in_uint8s(s, 8); /* signature */
sec_decrypt(s->p, s->end - s->p);
}
return s;
}
}
if (g_encryption || !g_licence_issued)
{
in_uint32_le(s, sec_flags);
if (sec_flags & SEC_ENCRYPT)
{
in_uint8s(s, 8); /* signature */
sec_decrypt(s->p, s->end - s->p);
}
if (sec_flags & SEC_LICENCE_NEG)
{
licence_process(s);
continue;
}
if (sec_flags & 0x0400) /* SEC_REDIRECT_ENCRYPT */
{
uint8 swapbyte;
in_uint8s(s, 8); /* signature */
sec_decrypt(s->p, s->end - s->p);
/* Check for a redirect packet, starts with 00 04 */
if (s->p[0] == 0 && s->p[1] == 4)
{
/* for some reason the PDU and the length seem to be swapped.
This isn't good, but we're going to do a byte for byte
swap. So the first foure value appear as: 00 04 XX YY,
where XX YY is the little endian length. We're going to
use 04 00 as the PDU type, so after our swap this will look
like: XX YY 04 00 */
swapbyte = s->p[0];
s->p[0] = s->p[2];
s->p[2] = swapbyte;
swapbyte = s->p[1];
s->p[1] = s->p[3];
s->p[3] = swapbyte;
swapbyte = s->p[2];
s->p[2] = s->p[3];
s->p[3] = swapbyte;
}
#ifdef WITH_DEBUG
/* warning! this debug statement will show passwords in the clear! */
hexdump(s->p, s->end - s->p);
#endif
}
}
if (channel != MCS_GLOBAL_CHANNEL)
{
channel_process(s, channel);
*rdpver = 0xff;
return s;
}
return s;
}
return NULL;
}
/* Establish a secure connection */
RD_BOOL
sec_connect(char *server, char *username, RD_BOOL reconnect)
{
struct stream mcs_data;
/* We exchange some RDP data during the MCS-Connect */
mcs_data.size = 512;
mcs_data.p = mcs_data.data = (uint8 *) xmalloc(mcs_data.size);
sec_out_mcs_data(&mcs_data);
if (!mcs_connect(server, &mcs_data, username, reconnect))
return False;
/* sec_process_mcs_data(&mcs_data); */
if (g_encryption)
sec_establish_key();
xfree(mcs_data.data);
return True;
}
/* Disconnect a connection */
void
sec_disconnect(void)
{
mcs_disconnect();
}
/* reset the state of the sec layer */
void
sec_reset_state(void)
{
g_server_rdp_version = 0;
g_sec_encrypt_use_count = 0;
g_sec_decrypt_use_count = 0;
mcs_reset_state();
}