rdesktop/secure.c
Pierre Ossman 3e340f2f20 Add explicit STREAM allocation function
Avoids mistakes by making sure everyone allocates these the same
way.

The smart card code still has manual allocation because it has it's
own magical memory management.
2019-05-06 14:33:05 +02:00

1020 lines
27 KiB
C

/* -*- c-basic-offset: 8 -*-
rdesktop: A Remote Desktop Protocol client.
Protocol services - RDP encryption and licensing
Copyright (C) Matthew Chapman <matthewc.unsw.edu.au> 1999-2008
Copyright 2005-2011 Peter Astrand <astrand@cendio.se> for Cendio AB
Copyright 2017-2018 Henrik Andersson <hean01@cendio.se> for Cendio AB
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "rdesktop.h"
#include "ssl.h"
extern char g_hostname[16];
extern uint32 g_requested_session_width;
extern uint32 g_requested_session_height;
extern int g_dpi;
extern unsigned int g_keylayout;
extern int g_keyboard_type;
extern int g_keyboard_subtype;
extern int g_keyboard_functionkeys;
extern RD_BOOL g_encryption;
extern RD_BOOL g_licence_issued;
extern RD_BOOL g_licence_error_result;
extern RDP_VERSION g_rdp_version;
extern RD_BOOL g_console_session;
extern uint32 g_redirect_session_id;
extern int g_server_depth;
extern VCHANNEL g_channels[];
extern unsigned int g_num_channels;
extern uint8 g_client_random[SEC_RANDOM_SIZE];
static int g_rc4_key_len;
static RDSSL_RC4 g_rc4_decrypt_key;
static RDSSL_RC4 g_rc4_encrypt_key;
static uint32 g_server_public_key_len;
static uint8 g_sec_sign_key[16];
static uint8 g_sec_decrypt_key[16];
static uint8 g_sec_encrypt_key[16];
static uint8 g_sec_decrypt_update_key[16];
static uint8 g_sec_encrypt_update_key[16];
static uint8 g_sec_crypted_random[SEC_MAX_MODULUS_SIZE];
uint16 g_server_rdp_version = 0;
/* These values must be available to reset state - Session Directory */
static int g_sec_encrypt_use_count = 0;
static int g_sec_decrypt_use_count = 0;
/*
* I believe this is based on SSLv3 with the following differences:
* MAC algorithm (5.2.3.1) uses only 32-bit length in place of seq_num/type/length fields
* MAC algorithm uses SHA1 and MD5 for the two hash functions instead of one or other
* key_block algorithm (6.2.2) uses 'X', 'YY', 'ZZZ' instead of 'A', 'BB', 'CCC'
* key_block partitioning is different (16 bytes each: MAC secret, decrypt key, encrypt key)
* encryption/decryption keys updated every 4096 packets
* See http://wp.netscape.com/eng/ssl3/draft302.txt
*/
/*
* 48-byte transformation used to generate master secret (6.1) and key material (6.2.2).
* Both SHA1 and MD5 algorithms are used.
*/
void
sec_hash_48(uint8 * out, uint8 * in, uint8 * salt1, uint8 * salt2, uint8 salt)
{
uint8 shasig[20];
uint8 pad[4];
RDSSL_SHA1 sha1;
RDSSL_MD5 md5;
int i;
for (i = 0; i < 3; i++)
{
memset(pad, salt + i, i + 1);
rdssl_sha1_init(&sha1);
rdssl_sha1_update(&sha1, pad, i + 1);
rdssl_sha1_update(&sha1, in, 48);
rdssl_sha1_update(&sha1, salt1, 32);
rdssl_sha1_update(&sha1, salt2, 32);
rdssl_sha1_final(&sha1, shasig);
rdssl_md5_init(&md5);
rdssl_md5_update(&md5, in, 48);
rdssl_md5_update(&md5, shasig, 20);
rdssl_md5_final(&md5, &out[i * 16]);
}
}
/*
* 16-byte transformation used to generate export keys (6.2.2).
*/
void
sec_hash_16(uint8 * out, uint8 * in, uint8 * salt1, uint8 * salt2)
{
RDSSL_MD5 md5;
rdssl_md5_init(&md5);
rdssl_md5_update(&md5, in, 16);
rdssl_md5_update(&md5, salt1, 32);
rdssl_md5_update(&md5, salt2, 32);
rdssl_md5_final(&md5, out);
}
/*
* 16-byte sha1 hash
*/
void
sec_hash_sha1_16(uint8 * out, uint8 * in, uint8 * salt1)
{
RDSSL_SHA1 sha1;
rdssl_sha1_init(&sha1);
rdssl_sha1_update(&sha1, in, 16);
rdssl_sha1_update(&sha1, salt1, 16);
rdssl_sha1_final(&sha1, out);
}
/* create string from hash */
void
sec_hash_to_string(char *out, int out_size, uint8 * in, int in_size)
{
int k;
memset(out, 0, out_size);
for (k = 0; k < in_size; k++, out += 2)
{
sprintf(out, "%.2x", in[k]);
}
}
/* Reduce key entropy from 64 to 40 bits */
static void
sec_make_40bit(uint8 * key)
{
key[0] = 0xd1;
key[1] = 0x26;
key[2] = 0x9e;
}
/* Generate encryption keys given client and server randoms */
static void
sec_generate_keys(uint8 * client_random, uint8 * server_random, int rc4_key_size)
{
uint8 pre_master_secret[48];
uint8 master_secret[48];
uint8 key_block[48];
/* Construct pre-master secret */
memcpy(pre_master_secret, client_random, 24);
memcpy(pre_master_secret + 24, server_random, 24);
/* Generate master secret and then key material */
sec_hash_48(master_secret, pre_master_secret, client_random, server_random, 'A');
sec_hash_48(key_block, master_secret, client_random, server_random, 'X');
/* First 16 bytes of key material is MAC secret */
memcpy(g_sec_sign_key, key_block, 16);
/* Generate export keys from next two blocks of 16 bytes */
sec_hash_16(g_sec_decrypt_key, &key_block[16], client_random, server_random);
sec_hash_16(g_sec_encrypt_key, &key_block[32], client_random, server_random);
if (rc4_key_size == 1)
{
logger(Protocol, Debug, "sec_generate_keys(), 40-bit encryption enabled");
sec_make_40bit(g_sec_sign_key);
sec_make_40bit(g_sec_decrypt_key);
sec_make_40bit(g_sec_encrypt_key);
g_rc4_key_len = 8;
}
else
{
logger(Protocol, Debug,
"sec_generate_key(), rc_4_key_size == %d, 128-bit encryption enabled",
rc4_key_size);
g_rc4_key_len = 16;
}
/* Save initial RC4 keys as update keys */
memcpy(g_sec_decrypt_update_key, g_sec_decrypt_key, 16);
memcpy(g_sec_encrypt_update_key, g_sec_encrypt_key, 16);
/* Initialise RC4 state arrays */
rdssl_rc4_set_key(&g_rc4_decrypt_key, g_sec_decrypt_key, g_rc4_key_len);
rdssl_rc4_set_key(&g_rc4_encrypt_key, g_sec_encrypt_key, g_rc4_key_len);
}
static uint8 pad_54[40] = {
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54,
54, 54, 54,
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54,
54, 54, 54
};
static uint8 pad_92[48] = {
92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92
};
/* Output a uint32 into a buffer (little-endian) */
void
buf_out_uint32(uint8 * buffer, uint32 value)
{
buffer[0] = (value) & 0xff;
buffer[1] = (value >> 8) & 0xff;
buffer[2] = (value >> 16) & 0xff;
buffer[3] = (value >> 24) & 0xff;
}
/* Generate a MAC hash (5.2.3.1), using a combination of SHA1 and MD5 */
void
sec_sign(uint8 * signature, int siglen, uint8 * session_key, int keylen, uint8 * data, int datalen)
{
uint8 shasig[20];
uint8 md5sig[16];
uint8 lenhdr[4];
RDSSL_SHA1 sha1;
RDSSL_MD5 md5;
buf_out_uint32(lenhdr, datalen);
rdssl_sha1_init(&sha1);
rdssl_sha1_update(&sha1, session_key, keylen);
rdssl_sha1_update(&sha1, pad_54, 40);
rdssl_sha1_update(&sha1, lenhdr, 4);
rdssl_sha1_update(&sha1, data, datalen);
rdssl_sha1_final(&sha1, shasig);
rdssl_md5_init(&md5);
rdssl_md5_update(&md5, session_key, keylen);
rdssl_md5_update(&md5, pad_92, 48);
rdssl_md5_update(&md5, shasig, 20);
rdssl_md5_final(&md5, md5sig);
memcpy(signature, md5sig, siglen);
}
/* Update an encryption key */
static void
sec_update(uint8 * key, uint8 * update_key)
{
uint8 shasig[20];
RDSSL_SHA1 sha1;
RDSSL_MD5 md5;
RDSSL_RC4 update;
rdssl_sha1_init(&sha1);
rdssl_sha1_update(&sha1, update_key, g_rc4_key_len);
rdssl_sha1_update(&sha1, pad_54, 40);
rdssl_sha1_update(&sha1, key, g_rc4_key_len);
rdssl_sha1_final(&sha1, shasig);
rdssl_md5_init(&md5);
rdssl_md5_update(&md5, update_key, g_rc4_key_len);
rdssl_md5_update(&md5, pad_92, 48);
rdssl_md5_update(&md5, shasig, 20);
rdssl_md5_final(&md5, key);
rdssl_rc4_set_key(&update, key, g_rc4_key_len);
rdssl_rc4_crypt(&update, key, key, g_rc4_key_len);
if (g_rc4_key_len == 8)
sec_make_40bit(key);
}
/* Encrypt data using RC4 */
static void
sec_encrypt(uint8 * data, int length)
{
if (g_sec_encrypt_use_count == 4096)
{
sec_update(g_sec_encrypt_key, g_sec_encrypt_update_key);
rdssl_rc4_set_key(&g_rc4_encrypt_key, g_sec_encrypt_key, g_rc4_key_len);
g_sec_encrypt_use_count = 0;
}
rdssl_rc4_crypt(&g_rc4_encrypt_key, data, data, length);
g_sec_encrypt_use_count++;
}
/* Decrypt data using RC4 */
void
sec_decrypt(uint8 * data, int length)
{
if (length <= 0)
return;
if (g_sec_decrypt_use_count == 4096)
{
sec_update(g_sec_decrypt_key, g_sec_decrypt_update_key);
rdssl_rc4_set_key(&g_rc4_decrypt_key, g_sec_decrypt_key, g_rc4_key_len);
g_sec_decrypt_use_count = 0;
}
rdssl_rc4_crypt(&g_rc4_decrypt_key, data, data, length);
g_sec_decrypt_use_count++;
}
/* Perform an RSA public key encryption operation */
static void
sec_rsa_encrypt(uint8 * out, uint8 * in, int len, uint32 modulus_size, uint8 * modulus,
uint8 * exponent)
{
rdssl_rsa_encrypt(out, in, len, modulus_size, modulus, exponent);
}
/* Initialise secure transport packet */
STREAM
sec_init(uint32 flags, int maxlen)
{
int hdrlen;
STREAM s;
if (!g_licence_issued && !g_licence_error_result)
hdrlen = (flags & SEC_ENCRYPT) ? 12 : 4;
else
hdrlen = (flags & SEC_ENCRYPT) ? 12 : 0;
s = mcs_init(maxlen + hdrlen);
s_push_layer(s, sec_hdr, hdrlen);
return s;
}
/* Transmit secure transport packet over specified channel */
void
sec_send_to_channel(STREAM s, uint32 flags, uint16 channel)
{
int datalen;
#ifdef WITH_SCARD
scard_lock(SCARD_LOCK_SEC);
#endif
s_pop_layer(s, sec_hdr);
if ((!g_licence_issued && !g_licence_error_result) || (flags & SEC_ENCRYPT))
out_uint32_le(s, flags);
if (flags & SEC_ENCRYPT)
{
flags &= ~SEC_ENCRYPT;
datalen = s->end - s->p - 8;
sec_sign(s->p, 8, g_sec_sign_key, g_rc4_key_len, s->p + 8, datalen);
sec_encrypt(s->p + 8, datalen);
}
mcs_send_to_channel(s, channel);
#ifdef WITH_SCARD
scard_unlock(SCARD_LOCK_SEC);
#endif
}
/* Transmit secure transport packet */
void
sec_send(STREAM s, uint32 flags)
{
sec_send_to_channel(s, flags, MCS_GLOBAL_CHANNEL);
}
/* Transfer the client random to the server */
static void
sec_establish_key(void)
{
uint32 length = g_server_public_key_len + SEC_PADDING_SIZE;
uint32 flags = SEC_EXCHANGE_PKT;
STREAM s;
s = sec_init(flags, length + 4);
out_uint32_le(s, length);
out_uint8p(s, g_sec_crypted_random, g_server_public_key_len);
out_uint8s(s, SEC_PADDING_SIZE);
s_mark_end(s);
sec_send(s, flags);
}
/* Output connect initial data blob */
static void
sec_out_mcs_connect_initial_pdu(STREAM s, uint32 selected_protocol)
{
int length = 162 + 76 + 12 + 4 + (g_dpi > 0 ? 18 : 0);
unsigned int i;
uint32 rdpversion = RDP_40;
uint16 capflags = RNS_UD_CS_SUPPORT_ERRINFO_PDU;
uint16 colorsupport = RNS_UD_24BPP_SUPPORT | RNS_UD_16BPP_SUPPORT | RNS_UD_32BPP_SUPPORT;
uint32 physwidth, physheight, desktopscale, devicescale;
logger(Protocol, Debug, "%s()", __func__);
if (g_rdp_version >= RDP_V5)
rdpversion = RDP_50;
if (g_num_channels > 0)
length += g_num_channels * 12 + 8;
/* Generic Conference Control (T.124) ConferenceCreateRequest */
out_uint16_be(s, 5);
out_uint16_be(s, 0x14);
out_uint8(s, 0x7c);
out_uint16_be(s, 1);
out_uint16_be(s, (length | 0x8000)); /* remaining length */
out_uint16_be(s, 8); /* length? */
out_uint16_be(s, 16);
out_uint8(s, 0);
out_uint16_le(s, 0xc001);
out_uint8(s, 0);
out_uint32_le(s, 0x61637544); /* OEM ID: "Duca", as in Ducati. */
out_uint16_be(s, ((length - 14) | 0x8000)); /* remaining length */
/* Client information (TS_UD_CS_CORE) */
out_uint16_le(s, CS_CORE); /* type */
out_uint16_le(s, 216 + (g_dpi > 0 ? 18 : 0)); /* length */
out_uint32_le(s, rdpversion); /* version */
out_uint16_le(s, g_requested_session_width); /* desktopWidth */
out_uint16_le(s, g_requested_session_height); /* desktopHeight */
out_uint16_le(s, RNS_UD_COLOR_8BPP); /* colorDepth */
out_uint16_le(s, RNS_UD_SAS_DEL); /* SASSequence */
out_uint32_le(s, g_keylayout); /* keyboardLayout */
/*
* According to s.1.7 of MS-RDPESC if the build number is at least 4,304,
* SCREDIR_VERSION_LONGHORN is assumed; otherwise SCREDIR_VERSIONXP is to be used
*/
out_uint32_le(s, 2600); /* Client build. We are now 2600 compatible :-) */
/* Unicode name of client, padded to 32 bytes */
out_utf16s_padded(s, g_hostname, 32, 0x00);
out_uint32_le(s, g_keyboard_type); /* keyboardType */
out_uint32_le(s, g_keyboard_subtype); /* keyboardSubtype */
out_uint32_le(s, g_keyboard_functionkeys); /* keyboardFunctionKey */
out_uint8s(s, 64); /* imeFileName */
out_uint16_le(s, RNS_UD_COLOR_8BPP); /* postBeta2ColorDepth (overrides colorDepth) */
out_uint16_le(s, 1); /* clientProductId (should be 1) */
out_uint32_le(s, 0); /* serialNumber (should be 0) */
/* highColorDepth (overrides postBeta2ColorDepth). Capped at 24BPP.
To get 32BPP sessions, we need to set a capability flag. */
out_uint16_le(s, MIN(g_server_depth, 24));
if (g_server_depth == 32)
capflags |= RNS_UD_CS_WANT_32BPP_SESSION;
out_uint16_le(s, colorsupport); /* supportedColorDepths */
out_uint16_le(s, capflags); /* earlyCapabilityFlags */
out_uint8s(s, 64); /* clientDigProductId */
out_uint8(s, 0); /* connectionType */
out_uint8(s, 0); /* pad */
out_uint32_le(s, selected_protocol); /* serverSelectedProtocol */
if (g_dpi > 0)
{
/* Extended client info describing monitor geometry */
utils_calculate_dpi_scale_factors(g_requested_session_width,
g_requested_session_height, g_dpi, &physwidth,
&physheight, &desktopscale, &devicescale);
out_uint32_le(s, physwidth); /* physicalwidth */
out_uint32_le(s, physheight); /* physicalheight */
out_uint16_le(s, ORIENTATION_LANDSCAPE); /* Orientation */
out_uint32_le(s, desktopscale); /* DesktopScaleFactor */
out_uint32_le(s, devicescale); /* DeviceScaleFactor */
}
/* Write a Client Cluster Data (TS_UD_CS_CLUSTER) */
uint32 cluster_flags = 0;
out_uint16_le(s, CS_CLUSTER); /* header.type */
out_uint16_le(s, 12); /* length */
cluster_flags |= SEC_CC_REDIRECTION_SUPPORTED;
cluster_flags |= (SEC_CC_REDIRECT_VERSION_4 << 2);
if (g_console_session || g_redirect_session_id != 0)
cluster_flags |= SEC_CC_REDIRECT_SESSIONID_FIELD_VALID;
out_uint32_le(s, cluster_flags);
out_uint32(s, g_redirect_session_id);
/* Client encryption settings (TS_UD_CS_SEC) */
out_uint16_le(s, CS_SECURITY); /* type */
out_uint16_le(s, 12); /* length */
out_uint32_le(s, g_encryption ? 0x3 : 0); /* encryptionMethods */
out_uint32(s, 0); /* extEncryptionMethods */
/* Channel definitions (TS_UD_CS_NET) */
logger(Protocol, Debug, "sec_out_mcs_data(), g_num_channels is %d", g_num_channels);
if (g_num_channels > 0)
{
out_uint16_le(s, CS_NET); /* type */
out_uint16_le(s, g_num_channels * 12 + 8); /* length */
out_uint32_le(s, g_num_channels); /* number of virtual channels */
for (i = 0; i < g_num_channels; i++)
{
logger(Protocol, Debug, "sec_out_mcs_data(), requesting channel %s",
g_channels[i].name);
out_uint8a(s, g_channels[i].name, 8);
out_uint32_be(s, g_channels[i].flags);
}
}
s_mark_end(s);
}
/* Parse a public key structure */
static RD_BOOL
sec_parse_public_key(STREAM s, uint8 * modulus, uint8 * exponent)
{
uint32 magic, modulus_len;
if (!s_check_rem(s, 8)) {
return False;
}
in_uint32_le(s, magic);
if (magic != SEC_RSA_MAGIC)
{
logger(Protocol, Error, "sec_parse_public_key(), magic (0x%x) != SEC_RSA_MAGIC",
magic);
return False;
}
in_uint32_le(s, modulus_len);
modulus_len -= SEC_PADDING_SIZE;
if ((modulus_len < SEC_MODULUS_SIZE) || (modulus_len > SEC_MAX_MODULUS_SIZE))
{
logger(Protocol, Error,
"sec_parse_public_key(), invalid public key size (%u bits) from server",
modulus_len * 8);
return False;
}
if (!s_check_rem(s, 1 + SEC_EXPONENT_SIZE + modulus_len + SEC_PADDING_SIZE)) {
return False;
}
in_uint8s(s, 8); /* modulus_bits, unknown */
in_uint8a(s, exponent, SEC_EXPONENT_SIZE);
in_uint8a(s, modulus, modulus_len);
in_uint8s(s, SEC_PADDING_SIZE);
g_server_public_key_len = modulus_len;
return True;
}
/* Parse a public signature structure */
static RD_BOOL
sec_parse_public_sig(STREAM s, uint32 len, uint8 * modulus, uint8 * exponent)
{
uint8 signature[SEC_MAX_MODULUS_SIZE];
uint32 sig_len;
if (len != 72)
{
return True;
}
memset(signature, 0, sizeof(signature));
sig_len = len - 8;
in_uint8a(s, signature, sig_len);
return rdssl_sig_ok(exponent, SEC_EXPONENT_SIZE, modulus, g_server_public_key_len,
signature, sig_len);
}
/* Parse a crypto information structure */
static RD_BOOL
sec_parse_crypt_info(STREAM s, uint32 * rc4_key_size,
uint8 ** server_random, uint8 * modulus, uint8 * exponent)
{
uint32 crypt_level, random_len, rsa_info_len;
uint32 cacert_len, cert_len, flags;
RDSSL_CERT *cacert, *server_cert;
RDSSL_RKEY *server_public_key;
uint16 tag, length;
uint8 *next_tag, *end;
logger(Protocol, Debug, "%s()", __func__);
in_uint32_le(s, *rc4_key_size); /* 1 = 40-bit, 2 = 128-bit */
in_uint32_le(s, crypt_level); /* 1 = low, 2 = medium, 3 = high */
if (crypt_level == 0)
{
/* no encryption */
logger(Protocol, Debug, "sec_parse_crypt_info(), got ENCRYPTION_LEVEL_NONE");
return False;
}
in_uint32_le(s, random_len);
in_uint32_le(s, rsa_info_len);
if (random_len != SEC_RANDOM_SIZE)
{
logger(Protocol, Error, "sec_parse_crypt_info(), got random len %d, expected %d",
random_len, SEC_RANDOM_SIZE);
return False;
}
in_uint8p(s, *server_random, random_len);
/* RSA info */
end = s->p + rsa_info_len;
if (end > s->end)
{
logger(Protocol, Error, "sec_parse_crypt_info(), end > s->end");
return False;
}
in_uint32_le(s, flags); /* 1 = RDP4-style, 0x80000002 = X.509 */
if (flags & 1)
{
logger(Protocol, Debug,
"sec_parse_crypt_info(), We're going for the RDP4-style encryption");
in_uint8s(s, 8); /* unknown */
while (s->p < end)
{
in_uint16_le(s, tag);
in_uint16_le(s, length);
next_tag = s->p + length;
switch (tag)
{
case SEC_TAG_PUBKEY:
if (!sec_parse_public_key(s, modulus, exponent))
{
logger(Protocol, Error,
"sec_parse_crypt_info(), invalid public key");
return False;
}
logger(Protocol, Debug,
"sec_parse_crypt_info(), got public key");
break;
case SEC_TAG_KEYSIG:
if (!sec_parse_public_sig(s, length, modulus, exponent))
{
logger(Protocol, Error,
"sec_parse_crypt_info(), invalid public sig");
return False;
}
break;
default:
logger(Protocol, Warning,
"sec_parse_crypt_info(), unhandled crypt tag 0x%x",
tag);
}
s->p = next_tag;
}
}
else
{
uint32 certcount;
logger(Protocol, Debug,
"sec_parse_crypt_info(), We're going for the RDP5-style encryption");
in_uint32_le(s, certcount); /* Number of certificates */
if (certcount < 2)
{
logger(Protocol, Error,
"sec_parse_crypt_info(), server didn't send enough x509 certificates");
return False;
}
for (; certcount > 2; certcount--)
{ /* ignore all the certificates between the root and the signing CA */
uint32 ignorelen;
RDSSL_CERT *ignorecert;
in_uint32_le(s, ignorelen);
ignorecert = rdssl_cert_read(s->p, ignorelen);
in_uint8s(s, ignorelen);
if (ignorecert == NULL)
{ /* XXX: error out? */
logger(Protocol, Error,
"sec_parse_crypt_info(), got a bad cert: this will probably screw up the rest of the communication");
}
else
{
rdssl_cert_free(ignorecert);
}
}
/* Do da funky X.509 stuffy
"How did I find out about this? I looked up and saw a
bright light and when I came to I had a scar on my forehead
and knew about X.500"
- Peter Gutman in a early version of
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt
*/
in_uint32_le(s, cacert_len);
logger(Protocol, Debug,
"sec_parse_crypt_info(), server CA Certificate length is %d", cacert_len);
cacert = rdssl_cert_read(s->p, cacert_len);
in_uint8s(s, cacert_len);
if (NULL == cacert)
{
logger(Protocol, Error,
"sec_parse_crypt_info(), couldn't load CA Certificate from server");
return False;
}
in_uint32_le(s, cert_len);
logger(Protocol, Debug, "sec_parse_crypt_info(), certificate length is %d",
cert_len);
server_cert = rdssl_cert_read(s->p, cert_len);
in_uint8s(s, cert_len);
if (NULL == server_cert)
{
rdssl_cert_free(cacert);
logger(Protocol, Error,
"sec_parse_crypt_info(), couldn't load Certificate from server");
return False;
}
if (!rdssl_certs_ok(server_cert, cacert))
{
rdssl_cert_free(server_cert);
rdssl_cert_free(cacert);
logger(Protocol, Error,
"sec_parse_crypt_info(), security error, CA Certificate invalid");
return False;
}
rdssl_cert_free(cacert);
in_uint8s(s, 16); /* Padding */
server_public_key = rdssl_cert_to_rkey(server_cert, &g_server_public_key_len);
if (NULL == server_public_key)
{
logger(Protocol, Debug,
"sec_parse_crypt_info(). failed to parse X509 correctly");
rdssl_cert_free(server_cert);
return False;
}
rdssl_cert_free(server_cert);
if ((g_server_public_key_len < SEC_MODULUS_SIZE) ||
(g_server_public_key_len > SEC_MAX_MODULUS_SIZE))
{
logger(Protocol, Error,
"sec_parse_crypt_info(), bad server public key size (%u bits)",
g_server_public_key_len * 8);
rdssl_rkey_free(server_public_key);
return False;
}
if (rdssl_rkey_get_exp_mod(server_public_key, exponent, SEC_EXPONENT_SIZE,
modulus, SEC_MAX_MODULUS_SIZE) != 0)
{
logger(Protocol, Error,
"sec_parse_crypt_info(), problem extracting RSA exponent, modulus");
rdssl_rkey_free(server_public_key);
return False;
}
rdssl_rkey_free(server_public_key);
return True; /* There's some garbage here we don't care about */
}
return s_check_end(s);
}
/* Process crypto information blob */
static void
sec_process_crypt_info(STREAM s)
{
uint8 *server_random = NULL;
uint8 modulus[SEC_MAX_MODULUS_SIZE];
uint8 exponent[SEC_EXPONENT_SIZE];
uint32 rc4_key_size;
logger(Protocol, Debug, "%s()", __func__);
memset(modulus, 0, sizeof(modulus));
memset(exponent, 0, sizeof(exponent));
if (!sec_parse_crypt_info(s, &rc4_key_size, &server_random, modulus, exponent))
return;
logger(Protocol, Debug, "sec_parse_crypt_info(), generating client random");
generate_random(g_client_random);
sec_rsa_encrypt(g_sec_crypted_random, g_client_random, SEC_RANDOM_SIZE,
g_server_public_key_len, modulus, exponent);
sec_generate_keys(g_client_random, server_random, rc4_key_size);
}
/* Process SRV_INFO, find RDP version supported by server */
static void
sec_process_srv_info(STREAM s)
{
in_uint16_le(s, g_server_rdp_version);
logger(Protocol, Debug, "sec_process_srv_info(), server RDP version is %d",
g_server_rdp_version);
if (1 == g_server_rdp_version)
{
g_rdp_version = RDP_V4;
g_server_depth = 8;
}
}
/* Process connect response data blob */
void
sec_process_mcs_data(STREAM s)
{
uint16 tag, length;
uint8 *next_tag;
uint8 len;
in_uint8s(s, 21); /* header (T.124 ConferenceCreateResponse) */
in_uint8(s, len);
if (len & 0x80)
in_uint8(s, len);
logger(Protocol, Debug, "%s()", __func__);
while (s->p < s->end)
{
in_uint16_le(s, tag);
in_uint16_le(s, length);
if (length <= 4)
return;
next_tag = s->p + length - 4;
switch (tag)
{
case SEC_TAG_SRV_INFO:
logger(Protocol, Debug, "%s(), SEC_TAG_SRV_INFO", __func__);
sec_process_srv_info(s);
break;
case SEC_TAG_SRV_CRYPT:
logger(Protocol, Debug, "%s(), SEC_TAG_SRV_CRYPT", __func__);
sec_process_crypt_info(s);
break;
case SEC_TAG_SRV_CHANNELS:
logger(Protocol, Debug, "%s(), SEC_TAG_SRV_CHANNELS", __func__);
/* FIXME: We should parse this information and
use it to map RDP5 channels to MCS
channels */
break;
default:
logger(Protocol, Warning, "Unhandled response tag 0x%x", tag);
}
s->p = next_tag;
}
}
/* Receive secure transport packet */
STREAM
sec_recv(RD_BOOL * is_fastpath)
{
uint8 fastpath_hdr, fastpath_flags;
uint16 sec_flags;
uint16 channel;
STREAM s;
struct stream packet;
while ((s = mcs_recv(&channel, is_fastpath, &fastpath_hdr)) != NULL)
{
packet = *s;
if (*is_fastpath == True)
{
/* If fastpath packet is encrypted, read data
signature and decrypt */
/* FIXME: extracting flags from hdr could be made less obscure */
fastpath_flags = (fastpath_hdr & 0xC0) >> 6;
if (fastpath_flags & FASTPATH_OUTPUT_ENCRYPTED)
{
if (!s_check_rem(s, 8)) {
rdp_protocol_error("consume fastpath signature from stream would overrun", &packet);
}
in_uint8s(s, 8); /* signature */
sec_decrypt(s->p, s->end - s->p);
}
return s;
}
if (g_encryption || (!g_licence_issued && !g_licence_error_result))
{
/* TS_SECURITY_HEADER */
in_uint16_le(s, sec_flags);
in_uint8s(s, 2); /* skip sec_flags_hi */
if (g_encryption)
{
if (sec_flags & SEC_ENCRYPT)
{
if (!s_check_rem(s, 8)) {
rdp_protocol_error("consume encrypt signature from stream would overrun", &packet);
}
in_uint8s(s, 8); /* signature */
sec_decrypt(s->p, s->end - s->p);
}
if (sec_flags & SEC_LICENSE_PKT)
{
licence_process(s);
continue;
}
if (sec_flags & SEC_REDIRECTION_PKT)
{
uint8 swapbyte;
if (!s_check_rem(s, 8)) {
rdp_protocol_error("consume redirect signature from stream would overrun", &packet);
}
in_uint8s(s, 8); /* signature */
sec_decrypt(s->p, s->end - s->p);
/* Check for a redirect packet, starts with 00 04 */
if (s->p[0] == 0 && s->p[1] == 4)
{
/* for some reason the PDU and the length seem to be swapped.
This isn't good, but we're going to do a byte for byte
swap. So the first four value appear as: 00 04 XX YY,
where XX YY is the little endian length. We're going to
use 04 00 as the PDU type, so after our swap this will look
like: XX YY 04 00 */
swapbyte = s->p[0];
s->p[0] = s->p[2];
s->p[2] = swapbyte;
swapbyte = s->p[1];
s->p[1] = s->p[3];
s->p[3] = swapbyte;
swapbyte = s->p[2];
s->p[2] = s->p[3];
s->p[3] = swapbyte;
}
}
}
else
{
if (sec_flags & SEC_LICENSE_PKT)
{
licence_process(s);
continue;
}
s->p -= 4;
}
}
if (channel != MCS_GLOBAL_CHANNEL)
{
channel_process(s, channel);
continue;
}
return s;
}
return NULL;
}
/* Establish a secure connection */
RD_BOOL
sec_connect(char *server, char *username, char *domain, char *password, RD_BOOL reconnect)
{
uint32 selected_proto;
STREAM mcs_data;
/* Start a MCS connect sequence */
if (!mcs_connect_start(server, username, domain, password, reconnect, &selected_proto))
return False;
/* We exchange some RDP data during the MCS-Connect */
mcs_data = s_alloc(512);
sec_out_mcs_connect_initial_pdu(mcs_data, selected_proto);
/* finalize the MCS connect sequence */
if (!mcs_connect_finalize(mcs_data))
return False;
/* sec_process_mcs_data(&mcs_data); */
if (g_encryption)
sec_establish_key();
s_free(mcs_data);
return True;
}
/* Disconnect a connection */
void
sec_disconnect(void)
{
/* Perform a User-initiated disconnect sequence, see
[MS-RDPBCGR] 1.3.1.4 Disconnect Sequences */
mcs_disconnect(RN_USER_REQUESTED);
}
/* reset the state of the sec layer */
void
sec_reset_state(void)
{
g_server_rdp_version = 0;
g_sec_encrypt_use_count = 0;
g_sec_decrypt_use_count = 0;
g_licence_issued = 0;
g_licence_error_result = 0;
mcs_reset_state();
}