rdesktop/secure.c

641 lines
14 KiB
C
Raw Normal View History

/*
rdesktop: A Remote Desktop Protocol client.
Protocol services - RDP encryption and licensing
Copyright (C) Matthew Chapman 1999-2001
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "rdesktop.h"
#ifdef WITH_OPENSSL
#include <openssl/rc4.h>
#include <openssl/md5.h>
#include <openssl/sha.h>
#include <openssl/bn.h>
#else
#include "crypto/rc4.h"
#include "crypto/md5.h"
#include "crypto/sha.h"
#include "crypto/bn.h"
#endif
extern char hostname[16];
extern int width;
extern int height;
extern int keylayout;
extern BOOL encryption;
extern BOOL licence_issued;
static int rc4_key_len;
static RC4_KEY rc4_decrypt_key;
static RC4_KEY rc4_encrypt_key;
static uint8 sec_sign_key[8];
static uint8 sec_decrypt_key[16];
static uint8 sec_encrypt_key[16];
static uint8 sec_decrypt_update_key[8];
static uint8 sec_encrypt_update_key[8];
static uint8 sec_crypted_random[64];
/*
* General purpose 48-byte transformation, using two 32-byte salts (generally,
* a client and server salt) and a global salt value used for padding.
* Both SHA1 and MD5 algorithms are used.
*/
void
sec_hash_48(uint8 *out, uint8 *in, uint8 *salt1, uint8 *salt2, uint8 salt)
{
uint8 shasig[20];
uint8 pad[4];
SHA_CTX sha;
MD5_CTX md5;
int i;
for (i = 0; i < 3; i++)
{
memset(pad, salt + i, i + 1);
SHA1_Init(&sha);
SHA1_Update(&sha, pad, i + 1);
SHA1_Update(&sha, in, 48);
SHA1_Update(&sha, salt1, 32);
SHA1_Update(&sha, salt2, 32);
SHA1_Final(shasig, &sha);
MD5_Init(&md5);
MD5_Update(&md5, in, 48);
MD5_Update(&md5, shasig, 20);
MD5_Final(&out[i * 16], &md5);
}
}
/*
* Weaker 16-byte transformation, also using two 32-byte salts, but
* only using a single round of MD5.
*/
void
sec_hash_16(uint8 *out, uint8 *in, uint8 *salt1, uint8 *salt2)
{
MD5_CTX md5;
MD5_Init(&md5);
MD5_Update(&md5, in, 16);
MD5_Update(&md5, salt1, 32);
MD5_Update(&md5, salt2, 32);
MD5_Final(out, &md5);
}
/* Reduce key entropy from 64 to 40 bits */
static void
sec_make_40bit(uint8 *key)
{
key[0] = 0xd1;
key[1] = 0x26;
key[2] = 0x9e;
}
/* Generate a session key and RC4 keys, given client and server randoms */
static void
sec_generate_keys(uint8 *client_key, uint8 *server_key, int rc4_key_size)
{
uint8 session_key[48];
uint8 temp_hash[48];
uint8 input[48];
/* Construct input data to hash */
memcpy(input, client_key, 24);
memcpy(input + 24, server_key, 24);
/* Generate session key - two rounds of sec_hash_48 */
sec_hash_48(temp_hash, input, client_key, server_key, 65);
sec_hash_48(session_key, temp_hash, client_key, server_key, 88);
/* Store first 8 bytes of session key, for generating signatures */
memcpy(sec_sign_key, session_key, 8);
/* Generate RC4 keys */
sec_hash_16(sec_decrypt_key, &session_key[16], client_key,
server_key);
sec_hash_16(sec_encrypt_key, &session_key[32], client_key,
server_key);
if (rc4_key_size == 1)
{
DEBUG(("40-bit encryption enabled\n"));
sec_make_40bit(sec_sign_key);
sec_make_40bit(sec_decrypt_key);
sec_make_40bit(sec_encrypt_key);
rc4_key_len = 8;
}
else
{
DEBUG(("128-bit encryption enabled\n"));
rc4_key_len = 16;
}
/* Store first 8 bytes of RC4 keys as update keys */
memcpy(sec_decrypt_update_key, sec_decrypt_key, 8);
memcpy(sec_encrypt_update_key, sec_encrypt_key, 8);
/* Initialise RC4 state arrays */
RC4_set_key(&rc4_decrypt_key, rc4_key_len, sec_decrypt_key);
RC4_set_key(&rc4_encrypt_key, rc4_key_len, sec_encrypt_key);
}
static uint8 pad_54[40] = {
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54,
54, 54, 54,
54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54,
54, 54, 54
};
static uint8 pad_92[48] = {
92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,
92, 92, 92, 92, 92, 92, 92
};
/* Output a uint32 into a buffer (little-endian) */
void
buf_out_uint32(uint8 *buffer, uint32 value)
{
buffer[0] = (value) & 0xff;
buffer[1] = (value >> 8) & 0xff;
buffer[2] = (value >> 16) & 0xff;
buffer[3] = (value >> 24) & 0xff;
}
/* Generate a signature hash, using a combination of SHA1 and MD5 */
void
sec_sign(uint8 *signature, uint8 *session_key, int length,
uint8 *data, int datalen)
{
uint8 shasig[20];
uint8 md5sig[16];
uint8 lenhdr[4];
SHA_CTX sha;
MD5_CTX md5;
buf_out_uint32(lenhdr, datalen);
SHA1_Init(&sha);
SHA1_Update(&sha, session_key, length);
SHA1_Update(&sha, pad_54, 40);
SHA1_Update(&sha, lenhdr, 4);
SHA1_Update(&sha, data, datalen);
SHA1_Final(shasig, &sha);
MD5_Init(&md5);
MD5_Update(&md5, session_key, length);
MD5_Update(&md5, pad_92, 48);
MD5_Update(&md5, shasig, 20);
MD5_Final(md5sig, &md5);
memcpy(signature, md5sig, length);
}
/* Update an encryption key - similar to the signing process */
static void
sec_update(uint8 *key, uint8 *update_key)
{
uint8 shasig[20];
SHA_CTX sha;
MD5_CTX md5;
RC4_KEY update;
SHA1_Init(&sha);
SHA1_Update(&sha, update_key, 8);
SHA1_Update(&sha, pad_54, 40);
SHA1_Update(&sha, key, 8);
SHA1_Final(shasig, &sha);
MD5_Init(&md5);
MD5_Update(&md5, update_key, 8);
MD5_Update(&md5, pad_92, 48);
MD5_Update(&md5, shasig, 20);
MD5_Final(key, &md5);
RC4_set_key(&update, rc4_key_len, key);
RC4(&update, rc4_key_len, key, key);
if (rc4_key_len == 8)
sec_make_40bit(key);
}
/* Encrypt data using RC4 */
static void
sec_encrypt(uint8 *data, int length)
{
static int use_count;
if (use_count == 4096)
{
sec_update(sec_encrypt_key, sec_encrypt_update_key);
RC4_set_key(&rc4_encrypt_key, rc4_key_len, sec_encrypt_key);
use_count = 0;
}
RC4(&rc4_encrypt_key, length, data, data);
use_count++;
}
/* Decrypt data using RC4 */
static void
sec_decrypt(uint8 *data, int length)
{
static int use_count;
if (use_count == 4096)
{
sec_update(sec_decrypt_key, sec_decrypt_update_key);
RC4_set_key(&rc4_decrypt_key, rc4_key_len, sec_decrypt_key);
use_count = 0;
}
RC4(&rc4_decrypt_key, length, data, data);
use_count++;
}
static void
reverse(uint8 *p, int len)
{
int i, j;
uint8 temp;
for (i = 0, j = len-1; i < j; i++, j--)
{
temp = p[i];
p[i] = p[j];
p[j] = temp;
}
}
/* Perform an RSA public key encryption operation */
static void
sec_rsa_encrypt(uint8 *out, uint8 *in, int len,
uint8 *modulus, uint8 *exponent)
{
BN_CTX ctx;
BIGNUM mod, exp, x, y;
uint8 inr[SEC_MODULUS_SIZE];
int outlen;
reverse(modulus, SEC_MODULUS_SIZE);
reverse(exponent, SEC_EXPONENT_SIZE);
memcpy(inr, in, len);
reverse(inr, len);
BN_CTX_init(&ctx);
BN_init(&mod);
BN_init(&exp);
BN_init(&x);
BN_init(&y);
BN_bin2bn(modulus, SEC_MODULUS_SIZE, &mod);
BN_bin2bn(exponent, SEC_EXPONENT_SIZE, &exp);
BN_bin2bn(inr, len, &x);
BN_mod_exp(&y, &x, &exp, &mod, &ctx);
outlen = BN_bn2bin(&y, out);
reverse(out, outlen);
if (outlen < SEC_MODULUS_SIZE)
memset(out+outlen, 0, SEC_MODULUS_SIZE-outlen);
BN_free(&y);
BN_clear_free(&x);
BN_free(&exp);
BN_free(&mod);
BN_CTX_free(&ctx);
}
/* Initialise secure transport packet */
STREAM
sec_init(uint32 flags, int maxlen)
{
int hdrlen;
STREAM s;
if (!licence_issued)
hdrlen = (flags & SEC_ENCRYPT) ? 12 : 4;
else
hdrlen = (flags & SEC_ENCRYPT) ? 12 : 0;
s = mcs_init(maxlen + hdrlen);
s_push_layer(s, sec_hdr, hdrlen);
return s;
}
/* Transmit secure transport packet */
void
sec_send(STREAM s, uint32 flags)
{
int datalen;
s_pop_layer(s, sec_hdr);
if (!licence_issued || (flags & SEC_ENCRYPT))
out_uint32_le(s, flags);
if (flags & SEC_ENCRYPT)
{
flags &= ~SEC_ENCRYPT;
datalen = s->end - s->p - 8;
#if WITH_DEBUG
DEBUG(("Sending encrypted packet:\n"));
hexdump(s->p + 8, datalen);
#endif
sec_sign(s->p, sec_sign_key, 8, s->p + 8, datalen);
sec_encrypt(s->p + 8, datalen);
}
mcs_send(s);
}
/* Transfer the client random to the server */
static void
sec_establish_key()
{
uint32 length = SEC_MODULUS_SIZE + SEC_PADDING_SIZE;
uint32 flags = SEC_CLIENT_RANDOM;
STREAM s;
s = sec_init(flags, 76);
out_uint32_le(s, length);
out_uint8p(s, sec_crypted_random, SEC_MODULUS_SIZE);
out_uint8s(s, SEC_PADDING_SIZE);
s_mark_end(s);
sec_send(s, flags);
}
/* Output connect initial data blob */
static void
sec_out_mcs_data(STREAM s)
{
int hostlen = 2 * strlen(hostname);
out_uint16_be(s, 5); /* unknown */
out_uint16_be(s, 0x14);
out_uint8(s, 0x7c);
out_uint16_be(s, 1);
out_uint16_be(s, (158 | 0x8000)); /* remaining length */
out_uint16_be(s, 8); /* length? */
out_uint16_be(s, 16);
out_uint8(s, 0);
out_uint16_le(s, 0xc001);
out_uint8(s, 0);
out_uint32_le(s, 0x61637544); /* "Duca" ?! */
out_uint16_be(s, (144 | 0x8000)); /* remaining length */
/* Client information */
out_uint16_le(s, SEC_TAG_CLI_INFO);
out_uint16_le(s, 136); /* length */
out_uint16_le(s, 1);
out_uint16_le(s, 8);
out_uint16_le(s, width);
out_uint16_le(s, height);
out_uint16_le(s, 0xca01);
out_uint16_le(s, 0xaa03);
out_uint32_le(s, keylayout);
out_uint32_le(s, 419); /* client build? we are 419 compatible :-) */
/* Unicode name of client, padded to 32 bytes */
rdp_out_unistr(s, hostname, hostlen);
out_uint8s(s, 30 - hostlen);
out_uint32_le(s, 4);
out_uint32(s, 0);
out_uint32_le(s, 12);
out_uint8s(s, 64); /* reserved? 4 + 12 doublewords */
out_uint16(s, 0xca01);
out_uint16(s, 0);
/* Client encryption settings */
out_uint16_le(s, SEC_TAG_CLI_CRYPT);
out_uint16(s, 8); /* length */
out_uint32_le(s, encryption ? 1 : 0); /* encryption enabled */
s_mark_end(s);
}
/* Parse a public key structure */
static BOOL
sec_parse_public_key(STREAM s, uint8 **modulus, uint8 **exponent)
{
uint32 magic, modulus_len;
in_uint32_le(s, magic);
if (magic != SEC_RSA_MAGIC)
{
error("RSA magic 0x%x\n", magic);
return False;
}
in_uint32_le(s, modulus_len);
if (modulus_len != SEC_MODULUS_SIZE + SEC_PADDING_SIZE)
{
error("modulus len 0x%x\n", modulus_len);
return False;
}
in_uint8s(s, 8); /* modulus_bits, unknown */
in_uint8p(s, *exponent, SEC_EXPONENT_SIZE);
in_uint8p(s, *modulus, SEC_MODULUS_SIZE);
in_uint8s(s, SEC_PADDING_SIZE);
return s_check(s);
}
/* Parse a crypto information structure */
static BOOL
sec_parse_crypt_info(STREAM s, uint32 *rc4_key_size,
uint8 **server_random, uint8 **modulus, uint8 **exponent)
{
uint32 crypt_level, random_len, rsa_info_len;
uint16 tag, length;
uint8 *next_tag, *end;
in_uint32_le(s, *rc4_key_size); /* 1 = 40-bit, 2 = 128-bit */
in_uint32_le(s, crypt_level); /* 1 = low, 2 = medium, 3 = high */
in_uint32_le(s, random_len);
in_uint32_le(s, rsa_info_len);
if (random_len != SEC_RANDOM_SIZE)
{
error("random len %d\n", random_len);
return False;
}
in_uint8p(s, *server_random, random_len);
/* RSA info */
end = s->p + rsa_info_len;
if (end > s->end)
return False;
in_uint8s(s, 12); /* unknown */
while (s->p < end)
{
in_uint16_le(s, tag);
in_uint16_le(s, length);
next_tag = s->p + length;
switch (tag)
{
case SEC_TAG_PUBKEY:
if (!sec_parse_public_key
(s, modulus, exponent))
return False;
break;
case SEC_TAG_KEYSIG:
/* Is this a Microsoft key that we just got? */
/* Care factor: zero! */
break;
default:
unimpl("crypt tag 0x%x\n", tag);
}
s->p = next_tag;
}
return s_check_end(s);
}
/* Process crypto information blob */
static void
sec_process_crypt_info(STREAM s)
{
uint8 *server_random, *modulus, *exponent;
uint8 client_random[SEC_RANDOM_SIZE];
uint32 rc4_key_size;
if (!sec_parse_crypt_info(s, &rc4_key_size, &server_random,
&modulus, &exponent))
return;
/* Generate a client random, and hence determine encryption keys */
generate_random(client_random);
sec_rsa_encrypt(sec_crypted_random, client_random,
SEC_RANDOM_SIZE, modulus, exponent);
sec_generate_keys(client_random, server_random, rc4_key_size);
}
/* Process connect response data blob */
static void
sec_process_mcs_data(STREAM s)
{
uint16 tag, length;
uint8 *next_tag;
in_uint8s(s, 23); /* header */
while (s->p < s->end)
{
in_uint16_le(s, tag);
in_uint16_le(s, length);
if (length <= 4)
return;
next_tag = s->p + length - 4;
switch (tag)
{
case SEC_TAG_SRV_INFO:
case SEC_TAG_SRV_3:
break;
case SEC_TAG_SRV_CRYPT:
sec_process_crypt_info(s);
break;
default:
unimpl("response tag 0x%x\n", tag);
}
s->p = next_tag;
}
}
/* Receive secure transport packet */
STREAM
sec_recv()
{
uint32 sec_flags;
STREAM s;
while ((s = mcs_recv()) != NULL)
{
if (encryption || !licence_issued)
{
in_uint32_le(s, sec_flags);
if (sec_flags & SEC_LICENCE_NEG)
{
licence_process(s);
continue;
}
if (sec_flags & SEC_ENCRYPT)
{
in_uint8s(s, 8); /* signature */
sec_decrypt(s->p, s->end - s->p);
}
}
return s;
}
return NULL;
}
/* Establish a secure connection */
BOOL
sec_connect(char *server)
{
struct stream mcs_data;
/* We exchange some RDP data during the MCS-Connect */
mcs_data.size = 512;
mcs_data.p = mcs_data.data = xmalloc(mcs_data.size);
sec_out_mcs_data(&mcs_data);
if (!mcs_connect(server, &mcs_data))
return False;
sec_process_mcs_data(&mcs_data);
if (encryption)
sec_establish_key();
return True;
}
/* Disconnect a connection */
void
sec_disconnect()
{
mcs_disconnect();
}